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Orbital angular momentum and massless particles 

M A Lohe 
Department of Physics, Imperial College, London SW7 2BZ, UK 

Received 2 November 1976 

Abstract. We analyse certain realizations of the rotation group in which half-integer 
representations appear, even though we employ scalar fields only. This angular momentum 
is interpreted as being purely orbital, and is shown to apply only to massless particles. We 
discuss the double-valued nature of these representations, including transformation proper- 
ties of the spinors, which are formed only from space coordinates x and a/&. We describe 
also position and momentum operators which can be defined. 

1. Introduction 

The Dirac monopole provides an interesting example of how half-integral angular 
momentum can appear in a physical situation in which only scalar fields are present. The 
interpretation is that the non-local electromagnetic field carries the half-integral 
quantum numbers. The invariance group of the Dirac Hamiltonian was found by Fierz 
(1944) to be the rotation group, and integrability requirements (Hurst 1968) of these 
generators then lead to the Dirac charge quantization. More recent analyses have been 
given of these SO(3) representations (Frenkel and Hrask6 1976, Wu and Yang 1976), 
and include discussions of basis states and the global form of the rotations. 

We present here a second example of how half-integral angular momentum can 
appear using only scalar fields. Again, the rotation group is involved, but the interpre- 
tation is very different. We find that our generators J can be written formally as 
J = Q x P, where Q and P satisfy the canonical commutation relations for position and 
momentum operators, so that we have purely orbital angular momentum. However, 
contrary to the usual situation, we find that this angular momentum can take half- 
integral values. We deduce then that these realizations apply to free massless particles. 
It will be seen that we are able to analyse the angular momentum properties of such a 
massless particle adequately in a rotation group context, but we do not discuss the linear 
momentum operators which, inevitably, have indeterminate matrix elements as well as 
Hermiticity difficulties. However, the angular momentum operators J are legitimate 
quantum mechanical operators, being Hermitian with normalizable eigenstates. 

Let us explain the circumstances in which orbital angular momentum can take 
half-integral values. Let J = Q X P, where Q and P satisfy the canonical commutation 
relations 

[Qi, 011 = 0 = [pi, p1l 

[Q,, 41 = isij, 

and let J2+ = j ( j  + 1)$. Purely algebraic arguments (§ 3) indicate that two possibilities 
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1 3 5  exist for the values of j ,  either j = 0, 1,2,  . . . , or j = z , ~ ,  2, . . . . The conclusion that only 
integral values of j are allowed is usually obtained through a wave mechanical 
derivation, in which one uses the Schrodinger representation of operators satisfying 
(1.1). In view of the theorem of von Neumann concerning the uniqueness of the 
Schrodinger representation (a statement and discussion of this theorem is given by 
Reed and Simon 1972, chap. 8), it might be thought that the eigenvalue question is 
settled. However, von Neumann’s theorem applies only to the groups generated by Q 
and P,  not to the fundamental commutation relations (1.1). More precisely, let 

U ( t )  = exp(it. P), V(s)  = exp(is . Q), 

where t = (tl,  t2 ,  t3) and s = (sl, s2,  s3) are three-component parameters. Then the 
Schrodinger representation is the unique (up to multiplicity and unitary equivalence) 
solution of the Weyl relations 

U(t)V(s)  =exp(it. s )V(s)U( t ) .  (1.2) 

Thus there could be realizations of operators satisfying equations (l.l), for which the 
groups do not satisfy the Weyl relations and so are inequivalent to the Schrodinger 
representation. Indeed, such examples are known (Reed and Simon 1972). The 
eigenvalue arguments which we employ are independent of the representation used, 
and we find that the restriction on j ,  imposed by the special form of the orbital angular 
momentum operators, is that j may vary only by integral steps, leaving the two 
possibilities mentioned above. Because these two spectra are different it is immediately 
clear that the position and momentum operators Q, P which describe the latter case are 
inequivalent to the corresponding operators of the Schrodinger representation. 

We can see immediately that any particle with mass must take only the integral 
values of j ,  and so can be described in the usual way with the Schrodinger 
representation. However, the particle with j = $, t ,  3, . . . must be massless. For, 
consider a (massive) particle in its rest frame, that is, consider only the states CC, such that 
P+=O. Using 

J 2 =  @P’+iQ.P( iQ.P+l ) ,  (1.3) 

it follows that J2+ = 0, so that any massive particle contains within its orbital angular 
momentum spectrum the value j = 0, and consequently also j = 1 ,2 ,3 ,  . . , . The 
particle described by half-integral j has a lowest state of j = $, and therefore cannot fall 
into the state with j = 0. According to the argument above, such a particle has no r&t 
frame and so must be massless. Evidently, its position and momentum vectors can 
never be parallel. We emphasize that the interpretation of the generators J which we 
present, as the orbital angular momentum operators for massless particles is based on 
the decomposition J =  Q x P,  which is of a formal nature only; we are interested here 
mainly in the properties of J, as a means of introducing spinor representations using 
only scalar fields. The methods used here are applicable to a relativistic treatment, and 
it is hoped to complete this work in the future. 

In § 2 we discuss the Schrodinger representation and formulate the usual orbital 
angular momentum theory in a group theoretical manner consistent with the approach 
to be used later. We examine the eigenvalue question and conclude that only integral 
values of orbital angular momentum are allowed. In § 3 we present representation- 
independent arguments on possible values of j ,  and find that j must vary by integral 
steps. 
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Next, we construct those representations of SO(3) which are labelled by half 
integers, the spinor (double-valued) representations. Here we use some recent tech- 
niques (Lohe and Hurst 1971) developed for the study of the orthogonal groups, the 
most important of which is the use of operators ai, ‘traceless boson operators’, with 
properties specially tailored for use in SO(3). These operators (defined by equation 
(4.1) below), enable one to project easily from the space of functions +(x) onto the 
subspace of harmonic functions +(a).  Operators and functions in x and a/& can be 
written more concisely and in a more transparent form using only a and a/&. The 
advantage of this approach has been demonstrated (Lohe and Hurst 1971) in applica- 
tions to the orthogonal groups, particularly in the discussion of Weyl tensors and 
orthonormal basis states, where general results can be obtained with methods analog- 
ous to those employed for the unitary groups. However, there is an additional, 
remarkable property of a which is not possessed by x, and which is the cornerstone of 
our construction: the operators ai can be made to transform as either vector or spinor 
components as required. In this way one does not need to introduce new spinorial 
objects, but can construct the double-valued representations by employing as a 
representation space the functions on the unit sphere. Here, we mean by ‘representa- 
tion’ a homomorphism that could be double-valued, and so we allow for a representa- 
tion Tg, g E S0(3), that 

where the sign cannot be uniquely chosen. The necessity to permit such double-valued 
representations in quantum mechanics has been explained by Wigner (1939). 

The relevance of the doubly-connected nature of the SO(3) manifold to properties 
of the real world can be demonstrated in a striking way by a construction due to Dirac, 
termed ‘the spinor spanner’ (Bolker 1973). In this demonstration one carries out 
certain operations on a bundle of strings (including rotations), for which a rotation by 
47r and not by 27r is equivalent to the identity rotation. A description is given also by 
Gardner (1966) and Misner eta1 (1973). 

The problem of constructing SO(3) spinor representations in the space of functions 
on the unit sphere has been solved (Lohe 1973) in the general context of the orthogonal 
groups. We describe the ingredients of this construction in 9 4, using here the familiar 
form of metric encountered in physical situations, and clarifying the role of a as a spinor 
operator. Also, it is verified that the representations are double-valued by computing 
the representation matrix elements, which span the space of functions on the group 
manifold, and which turn out to be the Wigner functions D’,,,,,(cy, p, y) .  It will be seen 
that we can utilize the same basis functions, the solid spherical harmonics, for the 
construction of both spinor and tensor representations by employing different forms of 
the generators. These different forms (equation (4.11) below) are labelled by a 
parameter A taking values A = 0, 4, 1 , .  . . ; integral values of A generate the tensor 
representations and half-integral values generate the spinor representations. It will 
appear (9  5 )  that there are actually only two distinct cases, which we take to be either 
A = 0, giving the usual theory of angular momentum, or A = i, leading to the new results. 

Finally, in 0 5 we describe an equivalence property which can be extrapolated to 
provide a method of defining position and momentum operators. This leads to the 
interpretation of J as orbital angular momentum. We also show that J is an Hermitian 
operator. 

Some calculations are detailed in the appendixes. 
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2. The Schrodinger representation 

In the Schrodinger representation the orbital angular momentum takes the form 

L = -ir x a, (2.1) 

(where d = a/&) and satisfies 

[Li, Lj 1 ieijplp (summation). 

It is usual to transform to spherical polar coordinates?, 

x* = e*'% sin 8 

x3 = r cos 8, 

and to solve the simultaneous differential equations 

L2$ = 1(1+ l)$, 

L3$ = m$. 

(2.3) 

(2.4) 

The angular dependence of the particle wavefunctions is then the spherical harmonics 
Ylm(8, c$), and 1 takes integral values 0 ,1 ,2 ,  . . . , with the magnetic quantum number m 
satisfying lml s 1 (showing also that the dimension of the representation is 21 + 1). 

In the group theoretic approach one starts by defining a representation Tg of the 
group SO(3) according to 

Tg$(x) = W g ) .  (2.5) 

Here x is a row vector, and g is a 3 x 3  matrix belonging to SO(3). The group 
generators, calculated by standard techniques (see for example Miller 1968) are the 
operators L given by equation (2.1). The representation will be irreducible if +(x) is a 
harmonic homogeneous polynomial in x of degree I ,  that is, if $(x) satisfies 

where A = a .  a and N = x . a are the Laplace and Euler operators respectively. Next, 
one uses the theorem of Cartan, showing that an irreducible representation space 
contains a unique highest-weight polynomial (a proof is given by Zhelobenko 1962). 
This polynomial is found to be 

(2.7) 1 
$11 = x+* 

Then, by applying the lowering operator L- one obtains the basis states as Gegenbauer 
polynomials : 

$,,(x) = r ' - m x y G - 2 ( x g / r ) .  (2.8) 

In polar coordinates these states are just the solid spherical harmonics r'Ylm(8, 4). 
As we have mentioned, the construction outlined so far leads only to the representa- 

tions of SO(3) for which the label 1 is integral, and we now examine the reasons for this 
restriction. Let us take for example the case 1 = $, for which the representation is two 

t We use the notation, given a three-vector A, that A, = A l  *iA2. 
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dimensional, and try to repeat the previous steps. One has a state of highest weight 
which is (from equation (2.7)): 

(2.9) 

and by applying L- one obtains 4112,-1/2: 

It is here that the attempted construction fails, because L-41/2,-1/2 is not zero as it 
should be, and in fact one can continue applying L- indefinitely without reaching the 
zero vector. One might hope then that a suitable set of basis states is provided by the 
spherical harmonics YI,(B, +), defined for half-integral 1 and m via equation (2.8).  
However, such states do not transform linearly amongst themselves under SO(3) 
transformations (as the above example shows), and so the attempt again fails. 

There remains a puzzle concerning this failure. From the point of view of represen- 
tation theory one is using two well known theorems, that all unitary irreducible 
representations of compact groups are finite dimensional (Zhelobenko 1973), and that 
each irreducible representation space is the cyclic envelope of a unique state, the 
highest-weight state (Zhelobenko 1962). Now, according to a theorem of Weyl(1946), 
one also knows that all representations of compact groups are completely reducible; 
one can therefore construct an irreducible representation of SO(3) by choosing a state 
of highest weight and applying the lowering operator L-, and expect to generate a 
finite-dimensional set of basis states. In practice we have found, choosing the state of 
highest weight as in equation (2.9), that an infinite-dimensional space has been 
obtained, and that an indecomposable representation has in fact been constructed. 
Apparently one has encountered representations of the Lie algebra which do not 
integrate to unitary finite-dimensional representations of the group. We will verify 
explicitly in § 4 that the double-valued representations of SO(3) which we construct are 
in fact finite dimensional, and unitarity can then be imposed. 

3. General eigenvalue arguments 

It is necessary to search for general arguments on possible eigenvalues of J2 ,  since, as 
explained in § 1, there might exist representations of Q and P inequivalent to the 
Schrodinger representation which allow J2  to take a different spectrum. In order to 
obtain representation-independent results, we use only the commutation relations of Q 
and P (equations (1.1)) which are to act on some abstract, unspecified Hilbert space. 

A suitable argument is due to Green (1965), and may be stated as follows. Let t,bj be 
an eigenvector of J2  with eigenvalue j ( j +  l), so that J21,bj = j ( j +  l)I,bj. Then 

J2&’ = j ( j  - I)+;-), 

J2f$j+’ = ( j  -t l)(j + 2)+j+’, 

where 

f$j-’=(Q. u)(J .  ~ - j ) t , b , ,  

and 

4 j ” = ( Q . u ) ( J . ~ + j + l ) + ~  

(3.1) 
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Here U = (ul, u2, ug) are the usual 2 X  2 Pauli matrices. The proof of equation (3.1) 
involves only the evaluation of commutators and is found in Green (1965). Equations 
(3.1) state that for a given value j of angular momentum the values j - 1 and j + 1 are 
also allowed. Hence j varies only by integral amounts, thereby eliminating all but two 
possible spectra, either j = 0, 1, 2, . . . , or j = 1 , 2 , 2 , . . * *  ' ' 

Now there is a further condition to be satisfied, which is that J z  can have only 
non-negative eigenvalues. One sees from equation (3.1) that this condition can be 
fulfilled for j = only if +&& = 0, that is, if 

4;:; Q u(J .  U -4)$1/2 = 0. (3 .2 )  

This is a necessary condition for the existence of the half-integral spectrum, and is not 
satisfied in the case of the Schrodinger representation. Let us also point out that 
similarly 4;-) must be zero at j = 0, in the case of integral eigenvalues, and that the 
Schrodinger representation indeed satisfies this condition. 

We can present these results in a more systematic way, and without the use of Pauli 
matrices. Firstly, we need to find the selection rules on matrix elements of Q and P, that 
is, we determine the values of Aj  = j ' -  j for which (Gj,, is non-zero. Here ( a ,  a )  

denotes the inner product of the Hilbert space on which Q, P act as Hermitian 
operators. We use the fact that Q (and similarly P )  are vector operators under SO(3) 
transformations: 

[Ji, Qj] = ieijpQp. (3.3) 

[ J 2 ,  [.I2, Q]]  = 2J2Q + 2QJ2. (3.4) 

The following result is then obtained using equation (3.3) and the fact that Q .  J =  0: 

Taking matrix elements of both sides leads to the equation 

showing that (GjLi., a$,)  = 0 unless A j  = j ' - j  = *le For the special case j =if= 0 the 
matrix element is also zero, as is shown by the explicit decomposition of Q given below. 
The same selection rules hold for P also. 

These selection rules indicate that we can decompose Q into two vector parts, Q(+) 
and Q(-), such that 

Q = Q ( + )  + Q(- ) ,  

and with the property that for Q(+) we have A j  = +1,  and for Q(-) we have Aj  = -1 .  The 
operators Q(*) will behave as raising and lowering operators with respect to the label j ,  
and one is then able to write the eigenvectors +;*) appearing in equation (3.2) as 
+;*) = Q(*)Gj,  and also as $I:*) = P(*'Gj. Decompositions of this kind for vector 
operators have been studied by Bracken and Green (1971) and suitable projection 
operators obtained as functions of J. In the no ation of their paper, to which we refer for 
details, the generators are akl = iekldp. Let us note that an arbitrary SO(3) vector A will 
normally be decomposed into three vector parts, 

A = A ' + ) + A ~ + A ( - ) ,  

where for A' one has A j  = 0, but that the vectors Q and P do not have components Q" 
and Po by virtue of the special property Q . J = 0 = P. J. In our problem, Q and P (and 
combinations from them) are the most general vectors at hand. 
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The characteristic identity for S0(3), which indicates how one may define the 
necessary projection operators, reads 

(a - A -  l)(a +A)(& - 1)=0 .  (3.5) 

Here (Y stands for the matrix with elements aij, and A is the implicit operator defined 
according to J 2  = A(A + l ) ,  and as such has eigenvalues j .  Now, following Bracken and 
Green (1971) one obtains 

Q'- '=(A+l)Q+iJXQ, 

Q'+'=AQ-iJX Q. 

(3.6a) 

(3.66) 

(Some details of the calculation are included in appendix 1.) Thus, we have that 
equations (3.1) hold with 4j*' = Q"'t,bj, and also with c$j*) = P(*'t,b? Here P(*) is defined 
analogously to @*I: 

P(-' = (A + 1)P+ i J X  P, 

P"'=AP-iJX P. 
(If desired, one could verify equations (3.1) directly using these definitions of Q(*' and 
P(*) without recourse to the characteristic identity (3.3.) 

The necessary condition (3.2) for the admission of half-integral j ,  namely 4&; = 0, 
now imposes the following conditions: 

= 0 = Q(-)$1,2 = P'-)t,bl,2. (3.7) 

There are actually twelve conditions to be satisfied here, since there are two indepen- 
dent states t,btI2 in the two-dimensional representation j = i. It remains to be seen 
whether it is in fact possible to construct operators Q and P which satisfy these 
conditions, but this will be done in appendix 2, and equations (3.7) explicitly verified. 
Thus the arguments of this section are the most general that can be applied to the 
problem. Finally, we remark that it is the selection rules of Q and P, namely, the fact 
that Aj  = f 1 rather than A j  = *i, which force j to vary only by integral rather than 
half-integral amounts. 

4. Spinor representations 

We now wish to find a construction of the spinor representations of SO(3) using the 
functions on the sphere as basis states, without introducing new spinorial objects; these 
representations must be double-valued (as will be explicitly verified). The method to be 
used has been described by Lohe (1973), and we refer to this paper for motivation of 
this construction and further details. It is necessary to recognize the fundamental role 
of the following operators: 

a = x - r2a(2N+ 1 ) p .  (4.1) 

These operators, traceless bosons, are the harmonic projections of the vector compo- 
nents xi in the following sense. Let R' denote the space of homogeneous polynomials of 
degree 1, and H' the subspace of harmonic polynomials. Then, one has the direct sum 
decomposition (Vilenkin 1968) 

R' = H'@r2R'-2,  
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which implies a corresponding decomposition for x: 

x = U + r2(4N+ ~)- 'A-K,  

where 

U =[1-r2(4N+6)-'A]x =x-r2a(2N+ l)-' 

in H'. This expression is determined by the requirement that Aaih(x)=O, in 
order that the range of a lie in H'. The following commutation relations are satisfied by 
U: 

[ai, ail= 0, (4.2) 

[ai, ai] = sij -2aiaj(2N+ l)? (4.3) 

a2h(x) = (a+a-+a:)h(x) = 0, 

An important property is the following traceless condition, for it shows that tensors 
constructed from a, are automatically traceless: 

(4.4) 
where h ( x )  is a harmonic function. Thus the use of ai enables one to perform an easy 
construction of basis states for irreducible representations of S0(3), because an 
arbitrary harmonic polynomial can be built up by repeated applications of ai to a 
reference state, which is taken to be the constant 1. If h(x) is a harmonic polynomial, 
it can be written more simply, by virtue of equation (4.4), as a polynomial in a, +(a). 
(It is understood that the operators a in such a polynomial are acting to the right on the 
constant 1 .) 

We can now reformulate the representation theory of S0(3) ,  as described in 0 2, in 
terms of a and a. The irreducible representation space consists of homogeneous 
polynomials 4 in a, and Tg is defined by: 

T,+W =+(ad. (4.5) 

(4.6) 

The generators are 

L = -ia x a =  -ir: x a  

as before, using equation (4.1). It is evident that under these transformations a behaves 
as a vector operator: 

[Li, ai] = ieijpup. 

The basis states are simply (Lohe and Hurst 1971) 
1-m m 1-m +lm(a) = (-1) a+a3 9 

ImIsI, and are necessarily equal to the states (2.8) previously derived, and so are 
actually the solid spherical harmonics. This example shows how a harmonic polynomial 
takes a simpler and more workable form when expressed as a polynomial in U .  

It is well known that in a unitary representation the matrix elements of L,  are: 

L*+im = [ ( I  m)(l* m + 1)11'2+1,m*1. 

From this the inner product, which need be defined only for basis states, is then 
determined to be: 

(4.9) 
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To this point we have only re-formulated the representation theory described in § 2 ,  
but now we generalize the definition of the representation (4.5) to the following: 

(4.10) 

Thus the special case (4.5) is obtained by putting A = 0. This multiplier representation 
was previously introduced (Lohe 1973), and required properties deduced in a general 
context, but for clarity we will derive the necessary results here directly. 

Now, firstly it is readily checked that T, is actually a representation: Tglg2 = Tg, Tg2. 
We also assert that T,$(a) will be a harmonic polynomial if $ is, provided A IS a 
non-negative integer, that is, the range of the operator Tg is spanned by the set (or a 
subset) of the polynomials (4.8). This can be seen by first calculating the generators J, 
which turn out to be: 

J+ = L+, 

a3 J- = L- + 2A--, 
a+ 

J3= L3- A, 

where L is given by (4.6), or explicitly, 

L+ = a3d+ - a+a3, 

L- = a-a, - a&, 

(4.11) 

(4.12) 

L~ = ;(a+a- - a-a,). 

The commutation relations are readily checked:, 

[A, 41 = iEijJp. (4.13) 

Since J+ = L+, the state of highest weight is unchanged, and so is therefore a + f orsome 
integer I ,  the polynomial degree. The representation label j is then deduced by finding 
the eigenvalue of J3 on this state (denoted $ j j ) ,  and from (4.11) one obtains 

j = l - A .  (4.14) 

Hence, 

+. JI i ' (4.15) 

is now found by repeated applications of J- to $jj, and 

4. im = (-l)j-maT+Aa&-m, (4.16) 

where ( m (  s j .  It is possible now to see why the restriction of A to non-negative integers 
ensures that only polynomials are obtained, because the representation space is 
spanned by the 2 j  + 1 = 21 - 2A + 1 states (4.16), and these are a subset of the 21 + 1 
harmonic functions (4.8) for integral A = 0, 
so that the representation cuts off as required at the minimum weight state $j,-r. The 
meaning of the inverse operator in equation (4. lo), and therefore also in (4.1 l), IS now 
clear; we have shown that both the domain and range of the operators Tg are the set of 
functions (4.16), for which the inverse has only a symbolic meaning. 

The general state 
calculations show that 

0. Indeed, one readily verifies that 



534 M A  Lohe 

The representations defined by (4.10) are not unitary in the previous inner product 
(4.9), but, in the same way as before, a re-definition to give unitary representations can 
be made, and is found to be: 

The normalized states are therefore 

(4.17) 

(4.18) 

Up to this point the introduction of the multiplier representation (4.10) has not led 
to new results, but has shown how the solid spherical harmonics of degree 1 can be made 
to carry any one of the SO(3) representations labelled by 1,l- 1, . . . , 1,0  depending on 
how A is chosen. For this reason, the multipliers of (4.10) used in this way are 
mathematically trivial, and indeed do not lead to any new physical description of 
angular momentum. 

However, there is an unexpected property which exposes a completely new struc- 
ture, that of the manner by which the doubly-connected nature of the SO(3) group 
manifold expresses itself through its spinor representations. This property is that the 
multiplier in (4.10) can be written as a perfect square: 

(ag)+/a+ = G2(a, g), (4.19) 

where G is a rational function in U .  This is most easily verified by using the Euler angles 
a, p, y, rather than the parametrization of g E SO(3) in terms of the elements gip The 
definition of cy, p, y (chosen to agree with Wigner 1959) is: 

g~~+ig~z- ig21+g22=e"~+y ' (cosp+1) ,  

g11+ig12+ig21-g22=e"a-Y)(cosp - I), 
g31+ ig3, = -e'" sin p, 
g13 + ig,, = e-" sin p, 
g33 = cos p. 

Then we obtain (using (4.4)): 

(4.20) 

sin qp(u3/a+). (4.21) 

This means that now A can take half-integral values, and the results derived for integral 
A apply also to half-integral values. This includes the form of the generators (4.1 l), and 
the labelling (4.14), the basis states (4.16) and the inner product (4.17). The labels j ,  m 
and A are simultaneously all integral, or all half-integral. In taking the square root one 
has introduced double-valued representations, as is apparent from the multiplier 
(4.21), because G changes sign under any one of the following transformations 
(comprising one complete rotation): 

= e ! l ( ~ + Y ) c o s  +p - e ; i ( a -Y)  

a+a+27T, 

P + P + T ,  
Y+,Y+2T. 
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For half-integral j (and corresponding half-integral A and m )  the basis states are still 
polynomials and are therefore the solid spherical harmonics, which span the represen- 
tation space of dimension 2 j+  1 = 21 -2A + 1, for any choice of A = 0, 4, 1, $, . . . , 1. 
Thus the basis states are still single-valued despiti: the appearance of double-valued 
representations. 

The difference in our approach compared to the unsuccessful attempt of § 2 is that 
we have taken a square root (4.19) in a way that retains the polynomial structure, unlike 
the square root of equation (2.9). As a result, while previously we tried to use the same 
generators (2.1) and different basis states for half-integral representations, now we use 
different generators (4.1 1) but the same basis states. An indecomposable infinite- 
dimensional representation is avoided, because finite-dimensional representation 
spaces are guaranteed from the finite dimensionality of the space of homogeneous 
polynomials of some fixed degree. 

The origin of the multiplier (4.19) and its perfect square property is found in Lohe 
(1973) and Lohe and Hurst (1973), where the connection between the methods used 
here and those of Zhelobenko (1962, 1973) are demonstrated. In this latter method, 
which is suited to a discussion of the orthogonal groups from the mathematical 
viewpoint, representations are constructed on homogeneous spaces defined from a 
triangular decomposition of the group. The multiplier (4.19) appears through the 
method of induced representations, as a matrix minor A(zg), and plays a central role in 
this context. The property (4.19) is proved by Zhelobenko (1962) for general 
octhogonal groups, and results from a theorem suggested by Godement (1952) which 
ensures that the method constructs all representations. The method in general, which 
relies on the existence of a highest (dominant) weight state, is known as the Borel-Weil 
theoremt, but can be traced ultimately to the work of Cartan. 

The essential role of the traceless bosons ai is apparent in the fundamental spinor 
representation, labelled j =$. The normalized basis states are, from (4.16) and (4.18) 
(putting A = 4): 

(4.22) 

(One may check that J-41/2,-1/2 = 0.) The matrix elements of Tg, obtained through 
equation(4. lo), are given by: 

(4.23) 

which we recognize as the Wigner function D1/’(a, p, y ) .  It is clear now that the 
two-component object (a+, -a3) is behaving as a spinor, since it transforms like the 
fundamental spinor representation, despite the introduction of a as a vector operator. 
Thus the operators ai, which are constructed only from space coordinates x and a, serve 
as both vector and spinor components. Evidently, the spinor (a+, -a3) changes sign 
under a rotation of 27r about any axis, and in this way exhibits its double-valued nature; 
nevertheless, when acting in the space of harmonic polynomials this spinor produces 
single-valued functions of x. 

Since the introduction of new objects behaving as spinors has been eliminated, our 
approach is distinct from the usual construction, which employs Cartan spinors (Cartan 

t Bore1 A and Weil A 1954 Seminaire Bourbaki (expost by J-P Serre). 
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1967). To clarify this difference, let us demonstrate how spinors arise in the usual 
formalism. One may start with a two-component Schwinger spinor (a1, a2)  (Schwinger 
1965), where al, a2 are ordinary boson creation operators, with adjoints E l ,  G 2 ,  and 
construct the operators. 

a; = -a l ,  

aL = a2,  2 (4.24) 

a; = ala2.  

2 

These operators behave as SO(3) vectors (i.e. satisfy equation (4.7)) provided the 
generators are defined as: 

L:. = a1LY2, 

L; = $ ( a l E 1  -a&), 

LI = a2&1, (4.25) 

The operators (4.24) also satisfy a;al+ a;’ = 0 in analogy with the traceless condition 
(4.4). One may follow the analysis of 9 2, and construct the highest-weight state a?, 
except that now equation (2.9) is allowed, since a legitimate square root is possible: 

a l .  

In this way the methods of 9 2 are valid for both integral and half-integral l, and one has 
in fact reproduced the well known representation theory of SU(2). Such spinor 
representations are seen, therefore, to arise in a way that is completely different from 
the method involving traceless bosons. Such a construction has no relevance to orbital 
angular momentum, but rather to spin angular momentum, because the spinor a = 
(a1, a2)  has no realizations in terms of space coordinates x and a. One reason for this is 
that one cannot take the square root 

Let us explain this important point in more detail. If one formulates the methods of 
9 2 using traceless bosons, as we have done, and tries to include the spinor representa- 
tions by taking the square root, as shown in equation (2.9), then one must first explain 
the symbol We assert that, in contrast to the expression (x+)’/~, the operator 
(a,)”’ is not defined. More generally, the operator 

s=a:  (4.26) 

is defined only for integral A 3 0 .  This can be seen in the following way. In any 
definition of (U+)’/’ it would be required that * 1 = 
(x+)-“~, this being merely the extension to half integers n of the equation 

as is possible for the Cartan spinors. 

. 1 = (x+)’/’ and 

a : .  l=x:, 

which is true €or integers n 3 0, as is proved by induction. Now, 

(a+)’/’ 1 = a+(a+)-”’. 1 

= [x+  - r 2 a + ( 2 ~ +  I)-~](x+)-~/’ 

= ( X + y 2  - r2(0 /O) ,  (4.27) 

that is, the second term is not zero as consistency requires, but is indeterminate. 
Although indeterminate quantities will arise when physical operators such as momen- 
tum are introduced, in the present group theoretical context the indeterminate quantity 
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in (4.27) is inconsistent and not legitimate. Hence ( u + ) ~ ’ ~  is not defined and the 
indecomposable representations obtained in 0 2 are eliminated right from the start. 

The computation of the matrix elements (4.23) for j = f is readily generalized to any 
representation label j .  If the matrix elements of Tg are defined by 

then these matrix elements, which are calculated from (4.10) using the normalized basis 
(4.18), are the familiar Wigner functions: 

[ Tg I k ’ m  = D ’ , f m ( a ,  PI Y ) .  (4.28) 

In the original parametrization of g they appear as Jacobi polynomials. This derivation 
applies to both half-integral and integral values of j ,  whereas previously a proof was 
possible for integralj only. It was noticed by Schwinger (1969, and earlier by Bopp and 
Haag (1950) that the matrix elements (4.28) could indeed be consistently extended to 
the case of half-integral j ,  m and m’, and in a similar context also by Goldberg et a1 
(1967) for spin s spherical harmonics, and we have now proved this. 

Let us remark on some eigenvalue properties. The half-integral eigenvalues arise 
because A may take half-integral values, and this may be understood (although not 
proved) in a simple way. The commutation relations (4.13) are satisfied for any value of 
A in (4.11), but A is quantized because in the space of harmonic polynomials (from 
equation (4.1 l)), 

.r2 = ( N -  A ) ( N - A  + I). 
N has only integral eigenvalues, so that A takes half-integral or integral values. The 
eigenvalue of N, which is 1, can take only integral values because its domain comprises 
only polynomials, and so from (4.14) we have that possible values of j ,  which must be 
non-negative, are either 

j = 0, 1,2, . . . (A integral), 

or 

j = ’  2, 2 2, s 2, . . . (A half-integral). 

At this stage, however, there is nothing to connect the generators (4.11) with orbital 
angular momentum operators. 

5. Equivalence mapping 

We now point out an equivalence property which adds considerable insight as to the 
origin of the generators (4.11). For the moment let us restrict A to integral values only, 
and observe that the operators J 2  and L2 (as defined through equations (4.11) and 
(4.12)) have identical spectra; it might therefore be guessed that these operators are 
related by a similarity transformation S :  

J =  SLS-’. (5.1) 

Under such a transformation the states 9 will be carried to Sq. We therefore compare 
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the basis states for A = 0 given by (4.8) with those for general A given by (4.16), and 
conjecture that 

(5.2) A S = a+.  

This operator does indeed accomplish the transformation (5.1), as is readily verified by 
transforming the representation mapping T,. From (4.5) 

Z-,$(d = $(ag), 
so that under S, 

Z-,$(a) +dT, (aYA$’ (a ) )  = ( a + / ( d + ) A $ ’ ( w ) ,  
in agreement with (4.10). Then (5.1) is verified, and shows in particular that the 
momentum and position operators are transformed to give 

P= -ia:daLA, (5.3) 

Q = a:xaTA. (5.4) 
Although the presence of the equivalence mapping shows that the case of integral A 

is of no interest, this situation changes completely for half-integral A. In fact, for A = 
the operator S does not exist, and the equivalence mapping (5.1) is no longer valid (as 
must be the case, considering that J 2  and L2 have different spectra for A =;). The fact 
that (a+)”2 cannot be defined was shown in 9 4, where S appeared (equation (4.26)) in a 
related context. 

Using S, however, one can determine the structure of the generators J and define 
momentum and position operators, irrespective of the value of A. This is because 
formal commutation relations are independent of the particular value of A. The 
momentum P is evaluated as 

P, = -ia, + i[a,, a : ] ~ ; ~  
A a .  
a+ a+ 

=-i~3,+i-(S~,+iL3,~)-2iA‘a+(2N-2A - l)-’ (5.5) 

(see appendix 2). We take this as the definition of P for A = 3, and similarly for Q. These 
position and momentum operators will then automatically satisfy the canonical commu- 
tation relations. In addition, also because of the equivalence nature of the transforma- 
tion S, the angular momentum Jcan  be written J = Q X P, even for A = i. This could, of 
course, be checked directly. 

Accordingly, we can view J as the generators of orbital angular momentum, and 
the interpretation in terms of massless particles follows. We repeat, however, that 
the decomposition of J as Q X P  is of a formal nature only and one observes, for 
example, that P has indeterminate matrix elements (appendix 2). Furthermore, 
although one can define an inner product using S,  in order to obtain an Hermitian P, the 
basis states would become non-normalizable. 

For J to be a valid quantum mechanical observable it must be an Hermitian 
operator. This can be readily proved because in equation (4.10) we have the global 
form of these rotations, meaning that the integral forms of the generators are well 
defined. Therefore, let 

U ( t )  = exp(ir. 4, (5.6) 
and U(t )  is a family of unitary operators, because, with the inner product (4.17) we have 
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defined unitary representations. Now, from (1.4) U(r) satisfies 

U(t  +s)  = ItU(r)U(s), (5.7) 

so that U(r) does not form a family of unitary groups in the usual sense (Reed and Simon 
1972, chap. 8). We have insisted here on strong continuity on the SO(3) group 
manifold, and so have identified a rotation by 27r with the identity transformation, 
thereby leading to the f sign. To eliminate this, we let f and s be parameters on the 
SU(2) manifold, on which we again require continuity, and note that the representation 
must now be single-valued. The operator U(t )  then forms a family of unitary groups, 
and we can apply Stone’s theorem (Reed and Simon 1972, chap. 8) to show that J are 
Hermitian operators. 

6.  Conclusion 

We have described certain realizations of the rotation group in which half-integral 
angular momentum appears, despite the presence of scalar fields only. There is some 
formal similarity to the rotation group properties that appear in the Dirac monopole, 
but the interpretation is very different. We have interpreted the angular momentum 
here as purely orbital, and deduced that this can apply to massless particles only. We 
have examined in some detail the various properties of this realization, having analysed, 
for example, relevant spinors and their transformation properties. In particular, we 
have studied the double-valued nature of these half-integer representations. 

In the full relativistic treatment it is expected that realizations of the PoincarC group 
will be found of a massless scalar particle taking all possible helicity values, including 
half integers. By application of the spin-statistics theorem, one would then have the 
new phenomenon of massless scalar fermions. Similar methods would be applicable, 
but without the problems originating from our non-relativistic treatment. 
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Appendix 1 

Let us indicate how to obtain the decomposition of Q into Q(*) given in equations (3.6). 
According to Bracken and Green (1971) the projection operators E(*) with the 
property that E‘*’Q = Q(*) are given by 

((Y + A)((Y - 1) 
A(2A + 1) ’ 

(-) - ((Y - A -  l)(a - 1) 
(A+ 1)(2A+ 1) * 

E -  E(+) = 

Now, to evaluate E‘”Q we use 

(YQ=-~JxQ,  a2Q=A(A+1)Q-iJxQ,  

and equations (3.6) follow, except that we have discarded irrelevant normalizations. 
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Appendix 2 

We calculate here the expression for P (equation ( 5 . 5 ) ) ,  and then verify that the 
conditions found in $ 3 ,  equation (3.7), are satisfied by both Q and P .  

Firstly we require 

[a,, a$]= ~ a ~ - 1 ( ~ j l + i ~ j z ) - 2 k a j a ~ - ' ~ + ( 2 ~ + 2 k  - I)-', 

for non-negative integers k. This equation follows by induction on k, using 

[a,, a + ] =  ~ j l + i ~ j z - 2 u j ~ + ( 2 ~ + 1 ) - ' .  

Then we have 

which equals 4, as required. To find the matrix elements of P, we obtain firstly the 
following, where qjm is defined by equation (4.16): 

a + + j m  = +j+l,m+l, 

a-+], = - 4 j + l , m - l ?  

a3+jm = -+j+l,m, 

and 

( j + m + 2 h ) ( j + m + 2 A - l )  
+j-l,m-l, 

a-+jm = 2j+2h - 1 

( j - m ) ( j + m  +2h)  
2 j+2h - 1 +j- 1,ms &+jm = - 

The proof is by induction on j and m, and uses the commutation relations (4.3). The 
matrix elements of P are then calculated to be: 

i ( j  - m ) ( j  - m - 1) 
2j-  1 +j-l,m+l, P++jm = 

i ( j  + m)( j  + m - 1) 
2j-  1 P-+jm = - +j-l,m-l, 

i ( j  - m)( j + m) 
2j- 1 +j-l ,m* P3+jm = 

We see that €or j = 1 these matrix elements are indeterminate, as is expected for a 
massless particle. We can now verify that = 0. The matrix elements of Pc-) are 
given by 

[(A + 1)p+ + i(Jx P)+]$jm 

[(A+ l)p_+i(JxP)-]+!~~~ =- i ( j+m)( j+m - l)+j-i,m-l, 

[(A+ l)P3+i(JXP)3]IL,m =i(j+m)(j-m)$j-l,m- 

U- m)( j  - m - l)+j-l,m+l, 
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Puttingj = 3, m = i$ we get P(-’$I/z  = 0. A more complicated calculation is needed to 
show that Q(-)+l,z = 0, and uses the relation 

a = Q-iQ2P(2N-2A + l)-’, 
which follows from (4.1), (5.3), (5.4). Using now 

[(A + 1)a + i J  x a]+j, = 0, 

it follows that Q(-)+l/2 = 0. 
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